Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 325
Filter
1.
Cuestiones infanc ; 24(1): 55-67, May 24, 2023.
Article in Spanish | LILACS, UNISALUD, BINACIS | ID: biblio-1442309

ABSTRACT

A partir de la presentación del caso clínico de un niño de 10 años llamado Belcebú, atendido durante la pandemia de forma virtual a lo largo de un año y cuatro meses, se realiza un comentario teórico-clínico puntualizando los aspectos vinculados a:los enunciados identificatorios; el niño en la estructura familiar y, como aspecto más relevante, el lugar del juego producido en las sesiones, el que sostenido por la mirada posibilitadora de la analista, le permitió alniño elaborar y rescribir marcas identitarias,en pos de una subjetivación menos tanática AU


Based on the presentation of the clinical case of a 10-year-old boy named Belcebú, treated virtually during the pandemic for a yearand four months, a theoretical-clinical comment is made, pointing out the aspects related to: the identifying statements; the child in the family structure and, as a most relevant aspect, the place of the play produced in the sessions, which, supported by the analyst's enabling gaze, allowed the child to elaborate and rewrite identity marks, in pursuit of a less thanatic subjectivation AU


Sur la base de la présentation du cas clinique d'un garçon de 10 ans nommé Belcebú, traité virtuellement pendant la pandémie durant un an et quatre mois, un commentaire théorico-clinique est fait, soulignant les aspects liés:aux énoncés identifiants; l'enfant dans la structure familiale et, comme aspect le plus pertinent, la place du jeu produit dans les séances, qui, soutenu par le regard habilitant de l'analyste, a permis à l'enfant d'élaborer et de réécrire des marques identitaires, à la poursuite d'une subjectivation moins thanatique AU


A partir da apresentação do caso clínico de um menino de 10 anos chamado Belcebú, tratado virtualmente durante a pandemia por um ano e quatro meses, é feito um comentário teórico-clínico, apontando os aspectos relacionados: a os depoimentos identificadores; a criança na estrutura familiar e, como aspecto mais relevante, o lugar da brincadeira produzida nas sessões, que, amparada pelo olhar capacitador do analista, permitiu à criança elaborar e reescrever marcas identitárias, em busca de uma subjetivação menos tanática AU


Subject(s)
Humans , Male , Child , Play Therapy/instrumentation , Family Structure , Identification, Psychological , Domestic Violence , Family Relations/psychology , Single-Case Studies as Topic/psychology
2.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 45(2): 137-145, Mar.-Apr. 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1439554

ABSTRACT

Currently, genome editing technologies, such as clustered regularly interspaced short palindromic repeats (CRISPR/Cas9), are predominantly used to model genetic diseases. This genome editing system can correct point or frameshift mutations in risk genes. Here, we analyze and discuss the advantages of genome editing, its current applications, and the feasibility of the CRISPR/Cas9 system in research on psychiatric disorders. These disorders produce cognitive and behavioral alterations and their etiology is associated with polygenetic and environmental factors. CRISPR/Cas9 may reveal the biological mechanisms of psychiatric disorders at a basic research level, translating a suitable clinical approach for use in the diagnosis and treatment of psychiatric disorders. Genetic diagnosis and treatment for these disorders have not yet been fully established in psychiatry due to the limited understanding of their heterogeneity and polygenicity. We discuss the challenges and ethical issues in using CRISPR/Cas9 as a tool for diagnosis or gene therapy.

3.
Rev. invest. clín ; 75(1): 13-28, Jan.-Feb. 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1450099

ABSTRACT

ABSTRACT CRISPR/Cas genes evolved in prokaryotic organisms as a mechanism of defense designed to identify and destroy genetic material from threatening viruses. A breakthrough discovery is that CRISPR/Cas system can be used in eukaryotic cells to edit almost any desired gene. This comprehensive review addresses the most relevant work in the CRISPR/Cas field, including its history, molecular biology, gene editing capability, ongoing clinical trials, and bioethics. Although the science involved is complex, we intended to describe it in a concise manner that could be of interest to diverse readers, including anyone dedicated to the treatment of patients who could potentially benefit from gene editing, molecular biologists, and bioethicists. CRISPR/Cas has the potential to correct inherited diseases caused by single point mutations, to knock-in the promoter of a gene whose expression is highly desirable or knockout the gene coding for a deleterious protein. CRISPR/Cas technique can also be used to edit ex vivo immune cells and reinsert them in patients, improving their efficiency in attacking malignant cells, limiting the infectious potential of viruses or modulating xenotransplant rejection. Very important bioethical considerations on this topic include the need to internationally regulate its use by ad hoc expert committees and to limit its use until safety and bioethical issues are satisfactorily resolved.

4.
Article | IMSEAR | ID: sea-220678

ABSTRACT

To enhance the crop production and to manage plant diseases, many chemicals are being used. The use of such agrochemicals is hazardous to environment. To identify a viable alternate, biocontrol agent is necessary. Keeping this in point, the present investigation was undertaken to isolate PGPR bacteria from paddy rhizospheric soil. A total of 100 bacteria were isolated. On the basis of morphological, physiological and biochemical characterisation most of the isolates belong to Pseudomonas aeruginosa. The isolates were further screened for siderophores production by CAS method. In this 10 isolates showed positive results in siderophore production. The produced siderophore were further characterised based on their classi?cation such as hydroxylate, catecholate and carboxamate depending on the iron ligating group. In the present study, the effect of culture media components in the yield of siderophore was studied. Among the 10 isolates, 3 of were produced catecholate type of siderophore ef?ciently in succinate medium at neutral pH in low iron concentration. Potential siderophore producing isolates was further applied on Vigna radiata (Green gram). There was a signi?cant increase in the shoot and root length by roll towel method and Pot assay method

5.
Braz. j. med. biol. res ; 56: e12854, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1520474

ABSTRACT

During the tumorigenic process, cancer cells may become overly dependent on the activity of backup cellular pathways for their survival, representing vulnerabilities that could be exploited as therapeutic targets. Certain molecular vulnerabilities manifest as a synthetic lethality relationship, and the identification and characterization of new synthetic lethal interactions may pave the way for the development of new therapeutic approaches for human cancer. Our goal was to investigate a possible synthetic lethal interaction between a member of the Chromodomain Helicase DNA binding proteins family (CHD4) and a member of the histone methyltransferases family (SETDB1) in the molecular context of a cell line (Hs578T) representing the triple negative breast cancer (TNBC), a subtype of breast cancer lacking validated molecular targets for treatment. Therefore, we employed the CRISPR-Cas9 gene editing tool to individually or simultaneously introduce indels in the genomic loci corresponding to the catalytic domains of SETDB1 and CHD4 in the Hs578T cell line. Our main findings included: a) introduction of indels in exon 22 of SETDB1 sensitized Hs578T to the action of the genotoxic chemotherapy doxorubicin; b) by sequentially introducing indels in exon 22 of SETDB1 and exon 23 of CHD4 and tracking the percentage of the remaining wild-type sequences in the mixed cell populations generated, we obtained evidence of the existence of a synthetic lethality interaction between these genes. Considering the lack of molecular targets in TNBC, our findings provided valuable insights for development of new therapeutic approaches not only for TNBC but also for other cancer types.

6.
Chinese Journal of Biotechnology ; (12): 3003-3014, 2023.
Article in Chinese | WPRIM | ID: wpr-981245

ABSTRACT

The generation of a tau-V337M point mutation mouse model using gene editing technology can provide an animal model with fast disease progression and more severe symptoms, which facilitate the study of pathogenesis and treatment of Alzheimer's disease (AD). In this study, single guide RNAs (sgRNA) and single-stranded oligonucleotides (ssODN) were designed and synthesized in vitro. The mixture of sgRNA, Cas9 protein and ssODN was microinjected into the zygotes of C57BL/6J mice. After DNA cutting and recombination, the site homologous to human 337 valine (GTG) in exon 11 was mutated into methionine (ATG). In order to improve the efficiency of recombination, a Rad51 protein was added. The female mice mated with the nonvasectomy male mice were used as the surrogates. Subsequently, the 2-cell stage gene edited embryos were transferred into the unilateral oviduct, and the F0 tau-V337M mutation mice were obtained. Higher mutation efficiency could be obtained by adding Rad51 protein. The F0 tau-V337M point mutation mice can pass the mutation on to the F1 generation mice. In conclusion, this study successfully established the first tau-V337M mutation mouse by using Cas9, ssODN and Rad51. These results provide a new method for developing AD mice model which can be used in further research on the pathogenesis and treatment of AD.


Subject(s)
Animals , Male , Female , Mice , Humans , CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems , Rad51 Recombinase/genetics , Mice, Inbred C57BL , Disease Models, Animal , Recombination, Genetic
7.
Chinese Journal of Biotechnology ; (12): 2566-2578, 2023.
Article in Chinese | WPRIM | ID: wpr-981216

ABSTRACT

Gene editing technology is a genetic operation technology that can modify the DNA sequence at the genomic level. The precision gene editing technology based on CRISPR/Cas9 system is a gene editing technology that is easy to operate and widely used. Unlike the traditional CRISPR/Cas9 system, the precision gene editing technology can perform site-directed mutation of genes without DNA template. This review summarizes the recent development of precision gene editing technology based on CRISPR/Cas9, and prospects the challenges and opportunities of this technology.


Subject(s)
Gene Editing , CRISPR-Cas Systems/genetics , Mutation , Genome
8.
Chinese Journal of Biotechnology ; (12): 2449-2464, 2023.
Article in Chinese | WPRIM | ID: wpr-981211

ABSTRACT

The CRISPR/Cas systems comprising the clustered regularly interspaced short palindromic repeats (CRISPR) and its associated Cas protein is an acquired immune system unique to archaea or bacteria. Since its development as a gene editing tool, it has rapidly become a popular research direction in the field of synthetic biology due to its advantages of high efficiency, precision, and versatility. This technique has since revolutionized the research of many fields including life sciences, bioengineering technology, food science, and crop breeding. Currently, the single gene editing and regulation techniques based on CRISPR/Cas systems have been increasingly improved, but challenges still exist in the multiplex gene editing and regulation. This review focuses on the development and application of multiplex gene editing and regulation techniques based on the CRISPR/Cas systems, and summarizes the techniques for multiplex gene editing or regulation within a single cell or within a cell population. This includes the multiplex gene editing techniques developed based on the CRISPR/Cas systems with double-strand breaks; or with single-strand breaks; or with multiple gene regulation techniques, etc. These works have enriched the tools for the multiplex gene editing and regulation and contributed to the application of CRISPR/Cas systems in the multiple fields.


Subject(s)
Gene Editing , CRISPR-Cas Systems/genetics , Bacteria/genetics , Archaea , Bioengineering
9.
Chinese Journal of Biotechnology ; (12): 1644-1654, 2023.
Article in Chinese | WPRIM | ID: wpr-981160

ABSTRACT

To explore the effect of Mlk3 (mixed lineage kinase 3) deficiency on blood pressure, Mlk3 gene knockout (Mlk3KO) mice were generated. Activities of sgRNAs targeted Mlk3 gene were evaluated by T7 endonuclease I (T7E1) assay. CRISPR/Cas9 mRNA and sgRNA were obtained by in vitro transcription, microinjected into zygote, followed by transferring into a foster mother. Genotyping and DNA sequencing confirmed the deletion of Mlk3 gene. Real- time PCR (RT-PCR), Western blotting or immunofluorescence analysis showed that Mlk3KO mice had an undetectable expression of Mlk3 mRNA or Mlk3 protein. Mlk3KO mice exhibited an elevated systolic blood pressure compared with wild-type mice as measured by tail-cuff system. Immunohistochemistry and Western blotting analysis showed that the phosphorylation of MLC (myosin light chain) was significantly increased in aorta isolated from Mlk3KO mice. Together, Mlk3KO mice was successfully generated by CRISPR/Cas9 system. MLK3 functions in maintaining blood pressure homeostasis by regulating MLC phosphorylation. This study provides an animal model for exploring the mechanism by which Mlk3 protects against the development of hypertension and hypertensive cardiovascular remodeling.


Subject(s)
Animals , Mice , Mice, Knockout , CRISPR-Cas Systems , Blood Pressure , Gene Knockout Techniques , Zygote
10.
Chinese Journal of Biotechnology ; (12): 1363-1373, 2023.
Article in Chinese | WPRIM | ID: wpr-981143

ABSTRACT

The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR associated proteins) system is an adaptive immune system of bacteria and archaea against phages, plasmids and other exogenous genetic materials. The system uses a special RNA (CRISPR RNA, crRNA) guided endonuclease to cut the exogenous genetic materials complementary to crRNA, thus blocking the infection of exogenous nucleic acid. According to the composition of the effector complex, CRISPR-Cas system can be divided into two categories: class 1 (including type Ⅰ, Ⅳ, and Ⅲ) and class 2 (including type Ⅱ, Ⅴ, and Ⅵ). Several CRISPR-Cas systems have been found to have very strong ability to specifically target RNA editing, such as type Ⅵ CRISPR-Cas13 system and type Ⅲ CRISPR-Cas7-11 system. Recently, several systems have been widely used in the field of RNA editing, making them a powerful tool for gene editing. Understanding the composition, structure, molecular mechanism and potential application of RNA-targeting CRISPR-Cas systems will facilitate the mechanistic research of this system and provide new ideas for developing gene editing tools.


Subject(s)
CRISPR-Cas Systems/genetics , RNA/genetics , Bacteria/genetics , Gene Editing , Archaea
11.
Chinese Journal of Pharmacology and Toxicology ; (6): 546-547, 2023.
Article in Chinese | WPRIM | ID: wpr-992217

ABSTRACT

OBJECTIVE Alzheimer disease(AD)is a neurodegenerative disease with clinical hallmarks of pro-gressive cognitive impairment.Synergistic effects of Aβ-tau cascade reaction are tightly implicated in AD patholo-gy,and microglial NLRP3 inflammasome activation drives neuronal tauopathy through microglia and neurons cross-talk.However,the underlying mechanism of how Aβ medi-ates NLRP3 inflammasome remains unclear.Shab related potassium channel member 1(Kv2.1)as a voltage gated po-tassium channel widely distributed in the central nervous system and plays an important role in regulating the out-ward potassium flow in neurons and glial cells.In current work,we aimed to explore the underlying mechanism of Kv2.1 in regulating Aβ/NLRP3 inflammasome/tau axis by using a determined Kv2.1 inhibitor drofenine(Dfe).METHODS Cell-based assays including Western blot-ting and immunofluorescence staining against primary microglia or neurons were carried out to expound the role of Kv2.1 channel in NLRP3 inflammasome activa-tion and subsequent neuronal tau hyperphosphorylation.For animal studies,new object recognition,Y-maze and Morris water maze were performed to evaluate the ame-lioration of Kv2.1 inhibition through either Kv2.1 inhibitor Dfe treatment or adeno-associated virus AAV-ePHP-si-Kv2.1injectionon5×FADADmodel mice.Assays of histol-ogy and immunostaining of tissue sections and Western blotting of brain tissues were performed to verify the con-clusion of cellular assays.RESULTS We reported that oligomeric Aβ(o-Aβ)bound to microglial Kv2.1 and pro-moted Kv2.1-dependent potassium leakage to activate NLRP3 inflammasome through JNK/NF-κB pathway sub-sequently resulting in neuronal tauopathy.Treatment of either Kv2.1 inhibitor Dfe or AAV-ePHP-si-Kv2.1 for brain-specific Kv2.1 knockdown deprived o-A β of its capability in inducing microglial NLRP3 inflammasome activation and neuronal tau hyperphosphorylation,while improved the cognitive impairment of 5×FAD AD model mice.CONCLUSION Our results have highly addressed that Kv2.1 channel is required for o-Aβ driving NLRP3 inflammasome activation and neuronal tauopathy in AD model mice and highlighted that Kv2.1 inhibition is a prom-ising therapeutical strategy for AD and Dfe as a Kv2.1 inhibitor shows potential in the treatment of this disease.

12.
Acta Pharmaceutica Sinica ; (12): 2560-2568, 2023.
Article in Chinese | WPRIM | ID: wpr-999027

ABSTRACT

A breakthrough in molecular biology for the twenty-first century is CRISPR/Cas gene editing, which has been used in a variety of fields due to its simplicity, adaptability, and targeting. Given the current global challenge of severe bacterial resistance, difficulties in detecting antimicrobial resistance, and slow development of antimicrobial drugs, CRISPR/Cas gene-editing technology offers a promising avenue for the development of antibacterial treatments. On the one hand, CRISPR/Cas gene editing technology helps advance the study of bacterial functions and serves as a toolbox. For instance, Cas proteins and exogenous repair systems enable efficient and precise gene editing, nCas proteins and deaminase systems facilitate template-free and single base precision editing, dCas proteins and reverse transcriptase allow for repair-free gene editing, and dCas proteins and modified sgRNA enable gene expression level regulation and gene function analysis. On the other hand, its specific gene recognition and targeted DNA cleavage characteristics can be used for pathogen detection, elimination of drug-resistant bacteria and genes, and hold promise as a new strategy for clinical diagnosis and treatment.

13.
Cancer Research on Prevention and Treatment ; (12): 1051-1058, 2023.
Article in Chinese | WPRIM | ID: wpr-998951

ABSTRACT

Objective To investigate the functions of the KIFC1 gene in tumor cells and its effect on the proliferation of cervical cancer cells. Methods We designed sgRNAs targeting the KIFC1 gene and constructed a recombinant plasmid based on the pSpCas9 (BB)-2A-GFP vector, which was co-transfected into HeLa cells. We screened monoclonal knockout cell lines through flow cytometry sorting, limited dilution inoculation of cells, and sequencing. RT-qPCR, Western blot, and immunofluorescence were used to detect the transcription and protein expression levels of KIFC1 in knockout cells. Cell phenotypes such as nucleus and microtubule cytoskeleton were observed using phase-contrast microscopy and fluorescence confocal microscopy. Cell proliferation, cell cycle, and apoptosis were analyzed by growth curve plotting, EdU labeling, and acridine orange staining. Results The deletion of the KIFC1 gene resulted in the abnormal phenotypes of HeLa cells, with increased numbers of multinuclei, micronucleus, and disordered microtubules. The cell cycle was disrupted, accompanied with a significant increase in the ratio of late apoptotic cells and a decrease in cell proliferation (all P < 0.05). Conclusion KIFC1 gene deletion affects the assembly of microtubules and cell division in HeLa cells, leading to abnormal nuclear morphology, chromatin elimination, cell cycle arrest, and increased cell apoptosis.

14.
Chinese Journal of Laboratory Medicine ; (12): 524-528, 2023.
Article in Chinese | WPRIM | ID: wpr-995759

ABSTRACT

Herpes simplex virus (HSV) is a double-stranded DNA enveloped virus that causes severe effects on the human body by infecting the skin and nerve tissues. Because of latency and reactivation, the rapid detection and eradication of HSV are great challenges for clinical treatments. In recent years, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system has developed rapidly in the field of gene editing and detection due to its simple design and high targeting efficiency.

15.
Chinese Journal of Ocular Fundus Diseases ; (6): 605-610, 2023.
Article in Chinese | WPRIM | ID: wpr-995673

ABSTRACT

Inherited retinal diseases (IRDs) are the major cause of refractory blinding eye diseases, and gene replacement therapy has already made preliminary progress in the treatment of IRDs. For IRDs that cannot be treated by gene replacement therapy, gene editing provides an alternative therapeutic method. Strategies like disruption of pathogenic variants with or without gene augmentation therapy and precise repair of pathogenic variants can be applied for IRDs with various inheritance patterns and pathogenic variants. In animal models of retinitis pigmentosa, Usher syndrome, Leber congenital amaurosis, cone rod cell dystrophy, and other disorders, CRISPR/Cas9, base editing, and prime editing showed the potential to edit pathogenic variations in vivo, indicating a promising future for gene editing therapy of IRDs.

16.
Chinese Journal of Biologicals ; (12): 400-2023.
Article in Chinese | WPRIM | ID: wpr-976169

ABSTRACT

@#ObjectiveTo design and construct CRISPR/Cas9 gene editing system targeting Tsc1 and Tsc2 genes,and verify the effectiveness of gene editing at cellular level.MethodsThree sgRNA guide sequences were designed for mouse Tsc1 and Tsc2 genes respectively. The sgRNA expression vector was constructed and co-transfected with the Cas9 expression plasmid into mouse N2a cells. After the positive cells were obtained through drug screening,the DNA fragments at the targeting site were amplified by PCR,and the targeting efficiency was verified by TA clone sequencing.ResultsThe five targets of Tsc1-M-sgRNA2 and Tsc1-M-sgRNA3 of Tsc1 gene and Tsc2-M-sgRNA1,Tsc2-M-sgRNA2 and Tsc2-M-sgRNA3 of Tsc2 gene were all edited,and the editing efficiency was 40%,80%,30%,30% and 20%,respectively.ConclusionA CRISPR-Cas9 gene editing system with editing efficiency targeting mouse Tsc1 and Tsc2 genes was successfully constructed.

17.
Chinese Journal of Cancer Biotherapy ; (6): 373-379, 2023.
Article in Chinese | WPRIM | ID: wpr-974922

ABSTRACT

@#[摘 要] 目的:基于CRISPR/Cas9基因编辑技术制备无内源TCR的TCR-T细胞并鉴定其在体外杀伤HPV16阳性宫颈癌SiHa细胞的功能。方法:培养健康志愿者外周血CD8+ T细胞和Jurkat细胞,CRISPR/Cas9基因编辑技术敲除CD8+ T、Jurkat细胞的TCR基因,制备过表达转基因TCR的重组慢病毒,在敲除内源性TCR的CD8+ T和Jurkat细胞中用慢病毒过表达转基因TCR制备TCR-T细胞,多色FCM检测TCR-T细胞中TCR和CD3的表达水平,荧光素酶活性实验检测TCR-T细胞对HPV16阳性SiHa细胞的杀伤效率。结果:CRIPSR/Cas9基因编辑技术高效地敲除了外周血CD8+ T细胞和Jurkat细胞中的TRAC和TRBC基因,敲除效率分别为(81.4±4.5)%、(98.5±0.07)%,制备的无内源TCR的TCR-T细胞高效表达转基因TCR,在外周血CD8+ T和Jurkat细胞中表达率为(66.0±17.8)%、(97.3±2.6)%,敲除内源TRAC和TRBC基因有效增强CD8+ T和Jurkat细胞膜表达转基因TCR(均P<0.01),敲除内源TCR增强TCR-T细胞特异性杀伤HPV16阳性的SiHa细胞[(71.4±1.0)% vs (35.1±2.0)%,P<0.01)]。结论:无内源TCR的TCR-T细胞显著增强转基因TCR的表达和对HPV16阳性宫颈癌SiHa细胞的靶向杀伤能力,为提高TCR-T细胞的临床疗效提供了实验依据。

18.
Chinese Journal of Experimental Ophthalmology ; (12): 925-930, 2023.
Article in Chinese | WPRIM | ID: wpr-990931

ABSTRACT

Several mutant genes for inherited retinal diseases have been identified, but effective treatments are still lacking.The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system can edit human genomic DNA by nonhomologous end joining or homology-directed repair, offering more possibilities for the treatment of hereditary retinal diseases.CRISPR/Cas9 not only can genetically correct patient-derived induced pluripotent stem cells (iPSCs) to observe their differentiation into retinal cells thereby, thereby exploring the pathogenesis of the disease and implementing cell therapy, but can also be delivered to the body via vectors and directly act on target cells to achieve in vivo gene editing.CRISPR/Cas9 gene editing technology in hereditary retinal diseases has been mainly used in retinitis pigmentosa, hereditary X-linked juvenile retinoschisis, and Leber congenital amaurosis 10, of which the in vitro application of CRISPR/Cas9 for Leber congenital amaurosis 10 has entered the clinical trial stage.In this paper, we reviewed the mechanism and key advances of CRISPR/Cas9 and provided an overview of gene editing in IRDs.

19.
International Journal of Biomedical Engineering ; (6): 144-150, 2023.
Article in Chinese | WPRIM | ID: wpr-989330

ABSTRACT

Cervical cancer is the fourth-ranked malignant tumor of female cancer in the world, and it seriously threatens women’s health. The main treatment options for patients with cervical cancer are surgery or concurrent chemoradiotherapy. With the development of medical research, researchers are committed to exploring more effective and specific treatment options in order to increase the treatment options for cervical cancer and improve the treatment effect. Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) technology is a method in which the Cas9 protein uses guide RNA (gRNA) to target the target gene and achieve precise editing of the target gene. At present, CRISPR/Cas9 technology has become a promising and powerful gene editing tool, a new and effective targeted therapy that has been applied in the treatment of various tumors. The research progress of CRISPR/Cas9 technology in the treatment of cervical cancer is mainly reviewed in terms of action targets, combination therapy strategies, and related drug resistance gene screening in order to provide new strategies for the treatment of cervical cancer.

20.
Journal of Southern Medical University ; (12): 527-536, 2023.
Article in Chinese | WPRIM | ID: wpr-986958

ABSTRACT

OBJECTIVE@#To investigate the role of myosin heavy chain 9 (MYH9) in regulation of cell proliferation, apoptosis, and cisplatin sensitivity of non-small cell lung cancer (NSCLC).@*METHODS@#Six NSCLC cell lines (A549, H1299, H1975, SPCA1, H322, and H460) and a normal bronchial epithelial cell line (16HBE) were examined for MYH9 expression using Western blotting. Immunohistochemical staining was used to detect MYH9 expression in a tissue microarray containing 49 NSCLC and 43 adjacent tissue specimens. MYH9 knockout cell models were established in H1299 and H1975 cells using CRISPR/Cas9 technology, and the changes in cell proliferation cell were assessed using cell counting kit-8 (CCK8) and clone formation assays; Western blotting and flow cytometry were used to detect apoptosis of the cell models, and cisplatin sensitivity of the cells was evaluated using IC50 assay. The growth of tumor xenografts derived from NSCLC with or without MYH9 knockout was observed in nude mice.@*RESULTS@#MYH9 expression was significantly upregulated in NSCLC (P < 0.001), and the patients with high MYH9 expression had a significantly shorter survival time (P=0.023). In cultured NSCLC cells, MYH9 knockout obviously inhibited cell proliferation (P < 0.001), promoted cell apoptosis (P < 0.05), and increased their chemosensitivity of cisplatin. In the tumor-bearing mouse models, the NSCLC cells with MYH9 knockout showed a significantly lower growth rate (P < 0.05). Western blotting showed that MYH9 knockout inactivated the AKT/c- Myc axis (P < 0.05) to inhibit the expression of BCL2- like protein 1 (P < 0.05), promoted the expression of BH3- interacting domain death agonist and the apoptosis regulator BAX (P < 0.05), and activated apoptosis-related proteins caspase-3 and caspase-9 (P < 0.05).@*CONCLUSION@#High expression of MYH9 contributes to NSCLC progression by inhibiting cell apoptosis via activating the AKT/c-Myc axis.


Subject(s)
Animals , Humans , Mice , Apoptosis , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Proliferation , Cisplatin/pharmacology , Cytoskeletal Proteins/metabolism , Lung Neoplasms/metabolism , Mice, Nude , Myosin Heavy Chains/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL